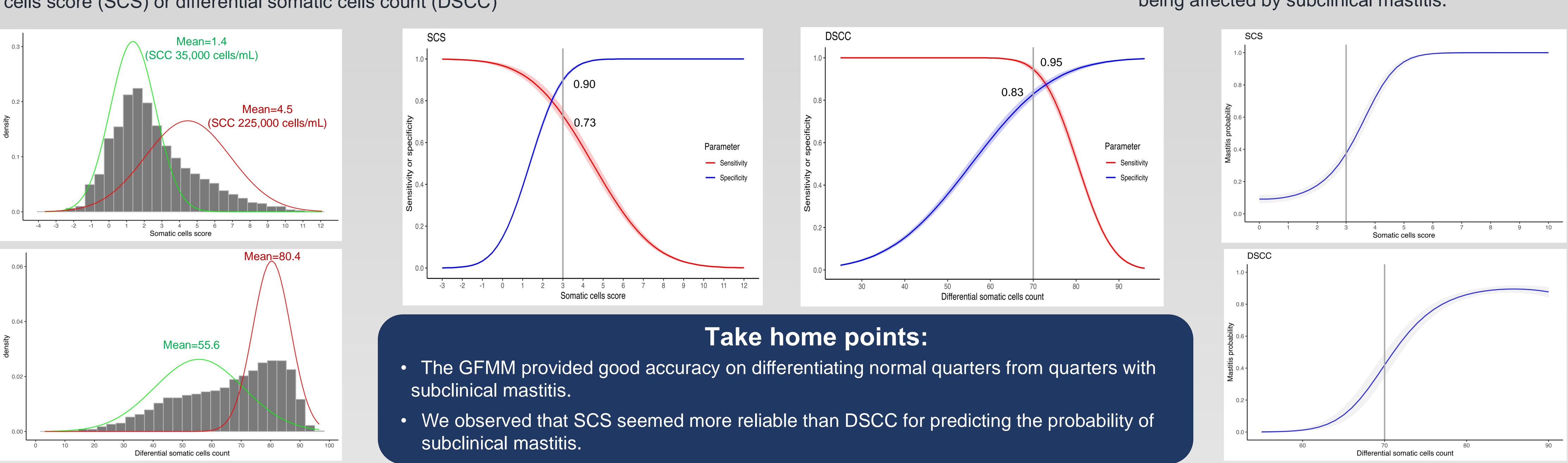
Université m de Montréal

Mariana Fonseca¹, Daryna Kurban¹, Jean-Philippe Roy¹, Débora E. Santschi², Elouise Molgat², Danchen A. Yang³, and Simon Dufour¹ ¹Université de Montréal, Saint-Hyacinthe, Québec, Canada; ²Lactanet, Sainte-Anne-de-Bellevue, Québec, Canada; ³Nanjing Agricultural University, Nanjing, China


Background

- Somatic cell count (SCC) has been widely used indicator of udder inflammation, assisting in detection subclinical mastitis.
- Differential somatic cell count (DSCC) represents combined proportion of lymphocytes and neutrop a milk sample.
- DSCC has become available for routine screenin dairy milk.

Objectives

- Identify reference values for SCS and DSCC and differentiate healthy quarters from those with sub mastitis.
- Estimate the predictive probability of subclinical r as a function of SCS or DSCC.

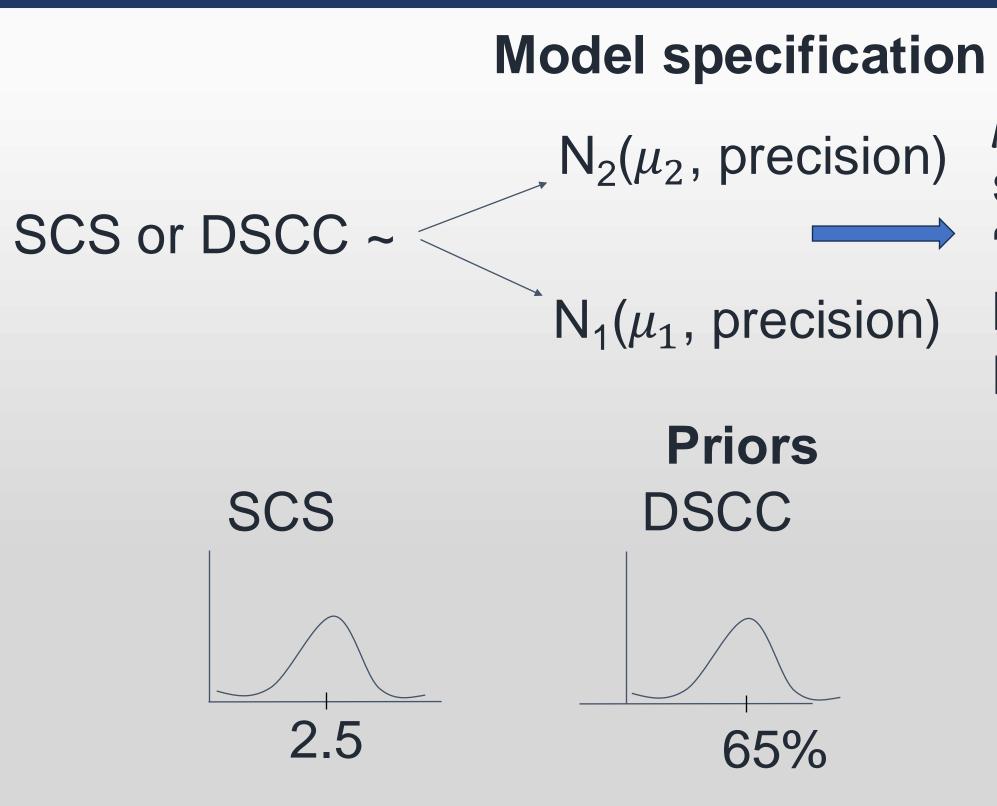
Figures 1 and 2. Estimated normal distributions of somatic cells score (SCS) or differential somatic cells count (DSCC)

Performance of somatic cell score and differential somatic cell count in identifying quarters with subclinical mastitis using **Gaussian finite mixture model**

as an	Herd and cow selection
ecting	 Convenience sample of five dairy
	 Cows were systematically selected
s the	Milk sample collection
philes in	 50mL of cisternal milk from each c
	 SCC and DSCC determined by Co
ng of	Data (two datasets)
	 SCS: cows within 5 to 305 DIM – \$
	quarters – 18,878 milk records.
	 DSCC: cows within 5 to 305 DIM -
d	quarters – 8,431 milk records.
bclinical	Statistical analysis
	 Gaussian finite mixture model: ass
mastitis	are generated from a mixture of tw
	distributions, and each distribution
	subaroup e a quarters with and y

Results

Material and Methods


farms using AMS. ed – approximately 600 cows.

quarter every other week. CombiFoss 7 DC instrument.

5 herds – 412 cows – 1,613

- 5 herds - 380 cows - 1,342

sumes that the observed data wo (or more) Gaussian n represents a distinct subgroup, e.g. quarters with and without subclinical mastitis.

Predictive estimation Posterior distributions: Se and Sp using the cumulative distribution functions (Φ) of the standard normal distributions.

Figures 3 and 4. Diagnostic accuracy of SCS and DSCC

Figures 5 and 6. Predicted probabilities of a quarter being affected by subclinical mastitis.

 $\mu_2 > \mu_1$ was specified to avoid 'label switching" between the two latent classes.

Precision